Research Progress of Preparation Methods of Graphene Nanocomposites for Low-Temperature Fuel Cells and Lithium-Ion Batteries

نویسندگان

  • X. - X. Wang
  • Y. - Q. Zhou
  • Y. Zhu
  • J. - D. Wei
  • H. - J. Ni
چکیده

Because of its unique two-dimensional structure, huge specific surface area, high electrical conductivity, and other excellent performances, graphene has shown great potential for application in catalysis, electronics, sensors, energy storage, and other areas. Especially, graphene nanocomposites have been found to be promising catalyst support for low-temperature fuel cells, and as anode nanomaterials for high reversible capacity and excellent rate capability for lithium-ion batteries, which has triggered a new round of research hotspot. Preparation methods of graphene nanocomposites mainly for low-temperature fuel cells are reviewed. Particularly, the research progress and principles of physical preparation methods (molecular beam epitaxy), chemical preparation methods (chemical reduction, electrochemical deposition and hydrothermal/solvothermal methods, etc.) and high-energy ball milling are summarized. Research outlook of graphene nanocomposites for low-temperature fuel cells are prospected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries†

This study reports a novel strategy of preparing graphene composites by employing graphene oxide as precursor and oxidizer. It is demonstrated that graphene oxide can oxidize stannous ions to form SnS2 and is simultaneously reduced to graphene, directly resulting in the formation of SnSx–graphene (1 < x < 2) nanocomposites. The particle size of SnSx in the nanocomposites is tailored to be about...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries

Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvotherma...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016